Introduction

xRBM is a python library that provides implementations of the family of Restericted Boltzmann Machine (RBM) models. It is still under development and its first vesrion will be released in Feb 2017.

RBM Models
Diagrams of Conditional RBM and Factored Conditional RBM

Contents

Currently, xRBM includes implementations for the following:

  • Restricted Boltzmann Machine (RBM)
  • Conditional Restricted Boltzmann Machine (CRBM)
  • CD-k Learning Algorithm

In future, I'm going to add implementations for the Factored CRBM (FCRBM) and the Persistent-CD learning algorithm.

Installation

You can install xRBM using pip:

pip install xrbm

Usage and Documentation

You can find the xRBM documentation here.

There are three tutorials in the Jupyter notebook format that guid you how to use the models in xRBM:

Source Code

xRBM is provided under the MIT License. You can find the source code on the github repository.